Ce căutaţi?

Introducere termen de căutare

Ne pare rău!

Nu a fost găsit niciun rezultat al căutării.

Logare

Sunteţi client nou?

Înregistraţi-vă şi bucuraţi-vă de multe avantaje:

Verificarea disponibilităţii produsului
Comandare suplimentară rapidă & istoricul comenzilor
Recomandări personale ale produsului
Plată cu factură

Help & Contact

Your direct line to us

If you have any questions about the online store or our products, you can call our customer service at:

Monday - Thursday: 8:00AM - 5:00PM
Friday: 8:00AM - 4:00PM
Except saturdays, sundays and holidays

Or use our FAQ

There you get answers to the most frequently asked questions.

Helping people help themselves
Întrebări frecvente

HK K1 CON

Gear pump, group 1 K1 CON
Design
Gear pump group 1. 
Connection drive side
Hole pattern 40 x 40 - Ø 32. 
Shaft
conical shaft 1:8 
Descărcare PDF
Înregistraţi-vă acum pentru a putea avea acces la magazinul nostru online.

Register now and access our complete product range and many exclusive services.

Caracteristici

Design
  • Gear pump group 1. 
Connection drive side
  • Hole pattern 40 x 40 - Ø 32. 
Shaft
  • conical shaft 1:8 
Connection suction side
  • BSPP female thread, parallel 
Thread suction side
  • G 3/8″ -19 
Connection pressure side
  • bore Ø 9.25 mm with O-ring 
Material
  • housing: aluminium 
  • front flange, end cover: aluminium. 
Media
  • HL - HLP DIN 51524 Part 1/2 
Viscosity
  • 20 to 100 cSt 
Customs tariff number
  • 84136031 
Toate caracteristicile

Descrierea produsului

Indicaţii
Tightening torque of the fastening nut on the shaft: 11.5 Nm

Product variants

13 Results
Afişare desen la cotă
Denumire
VFU (cm³)
p1 max. (bar)
p2 max. (bar)
p3 max. (bar)
VFU = conveying volume per revolution
p1 = continuous pressure
p2 = working pressure
p3 = maximum pressure

Shows 10 of 13

Column selection

VFU (cm³)
p1 max. (bar)
p2 max. (bar)
p3 max. (bar)
Direction of rotation
Min. speed (r/min)
Max. speed (r/min)
A (mm)
VFU = conveying volume per revolution
p1 = continuous pressure
p2 = working pressure
p3 = maximum pressure